Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Lancet Microbe ; 5(3): e247-e260, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280387

RESUMO

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS: We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS: We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION: Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING: Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.


Assuntos
COVID-19 , Armadilhas Extracelulares , Aspergilose Pulmonar , Adulto , Humanos , Feminino , Masculino , Estudos Retrospectivos , Antifúngicos , Estado Terminal , COVID-19/complicações , Sistema Respiratório , Análise de Sequência de RNA
2.
Int Rev Cell Mol Biol ; 382: 181-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225103

RESUMO

Immune checkpoints (ICs) play a central role in maintaining immune homoeostasis. The discovery that tumours use this physiological mechanism to avoid elimination by the immune system, opened up avenues for therapeutic targeting of ICs as a novel way of treating cancer. However, this therapy a new array of autoimmune side effects, termed immune-related adverse events (irAEs). In this narrative review, we first recapitulate the physiological function of ICs that are approved targets for cancer immunotherapy (CTLA-4, PD-(L)1 and LAG-3), as the groundwork to critically discuss current knowledge on irAEs. Specifically, we summarize clinical aspects and examine a molecular classification and predisposing factors of irAEs. Finally, we discuss irAE treatment, particularly emphasizing how molecular knowledge is changing the current treatment paradigm.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Humanos , Antineoplásicos Imunológicos/uso terapêutico , Autoimunidade , Neoplasias/patologia , Imunoterapia , Biologia
3.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505242

RESUMO

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Assuntos
COVID-19 , Humanos , Proteólise , Quimiocina CXCL12/metabolismo , Peptídeo Hidrolases , Pulmão/metabolismo , Receptores CXCR4 , Processamento de Proteína Pós-Traducional
4.
Oncoimmunology ; 12(1): 2219591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284695

RESUMO

Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Morte Celular , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Citocinas/metabolismo
5.
Cancer Treat Res Commun ; 36: 100727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37307680

RESUMO

INTRODUCTION: Until recently, the treatment for patients with locally advanced unresectable stage III non-small cell lung cancer (NSCLC) was combined chemoradiotherapy (CRT), delivered either concurrently (cCRT) or sequentially (sCRT). There is limited data on the outcomes and safety of CRT in a real-world setting. We conducted a real-world cohort analysis of our Leuven Lung Cancer Group (LLCG) experience with CRT for unresectable stage III NSCLC, prior to the era of consolidation treatment with immunotherapy. PATIENTS AND METHODS: In this observational, real-world monocentric cohort study, a total of 163 consecutive patients were included. They were diagnosed with unresectable stage III primary NSCLC and treated with CRT between January 1st, 2011, and December 31st, 2018. Patient and tumor characteristics, treatment patterns, toxicity, and primary outcome parameters such as PFS, OS and pattern of relapse were captured. RESULTS: CRT was concurrent in 108 patients, sequential in 55. Overall tolerability was good, with two thirds of patients without severe adverse events such as severe febrile neutropenia, ≥ grade 2 pneumonitis, or ≥ grade 3 esophagitis. All registered adverse events were more frequent in the cCRT group compared to the sCRT group. Median PFS was 13.2 months (95% CI 10.3-16.2), median OS was 23.3 months (95% CI 18.3-28.0), with a 47.5% survival rate at 2 years, and 29.4% at five years. CONCLUSIONS: This study provides a clinically relevant benchmark on the outcomes and toxicity of concurrent and sequential chemoradiotherapy in unresectable stage III NSCLC in a real-world setting in the pre-PACIFIC era.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Estudos de Coortes , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Estudos Observacionais como Assunto
6.
EBioMedicine ; 92: 104608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37224768

RESUMO

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Assuntos
COVID-19 , Humanos , Pulmão , Estudos Prospectivos , RNA Viral , SARS-CoV-2 , RNA Subgenômico
7.
Eur J Cancer ; 187: 36-57, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116287

RESUMO

INTRODUCTION: The use of immune checkpoint inhibitors (ICIs) in cancer immunotherapy has shown increased overall survival in a wide range of cancer types with the associated risk of developing severe immune-mediated adverse events, commonly involving the gastrointestinal tract. AIM: The aim of this position statement is to provide an updated practice advice to the gastroenterologists and oncologists on the diagnosis and management of ICI-induced gastrointestinal toxicity. METHODOLOGY: The evidence reviewed in this paper includes a comprehensive search strategy of English language publications. Consensus was reached using a three-round modified Delphi methodology and approved by the members of the Belgian Inflammatory Bowel Disease Research and Development Group (BIRD), Belgian Society of Medical Oncology (BSMO), Belgian group of Digestive Oncology (BGDO), and Belgian Respiratory Society (BeRS). CONCLUSIONS: The management of ICI-induced colitis requires an early multidisciplinary approach. A broad initial assessment is necessary (clinical presentation, laboratory markers, endoscopic and histologic examination) to confirm the diagnosis. Criteria for hospitalisation, management of ICIs, and initial endoscopic assessment are proposed. Even if corticosteroids are still considered the first-line therapy, biologics are recommended as an escalation therapy and as early treatment in patients with high-risk endoscopic findings.


Assuntos
Colite , Neoplasias , Humanos , Colite/induzido quimicamente , Colite/diagnóstico , Colite/terapia , Consenso , Técnica Delfos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico
8.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104043

RESUMO

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Animais , Camundongos , COVID-19/genética , COVID-19/patologia , Armadilhas Extracelulares/metabolismo , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/metabolismo , Pulmão/patologia , Complemento C5a/genética , Complemento C5a/metabolismo
9.
Cardiovasc Res ; 119(2): 520-535, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35998078

RESUMO

AIMS: Severe acute respiratory syndrome coronavirus-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage, and perturbed haemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single-nucleus RNA-sequencing on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs, and 12 controls. The vascular fraction, comprising 38 794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137 746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns, and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Síndrome do Desconforto Respiratório , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transcriptoma
10.
Radiology ; 307(1): e221145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537894

RESUMO

Background Interstitial lung abnormalities (ILAs) reflect imaging features on lung CT scans that are compatible with (early) interstitial lung disease. Despite accumulating evidence regarding the incidence, risk factors, and prognosis of ILAs, the histopathologic correlates of ILAs remain elusive. Purpose To determine the correlation between radiologic and histopathologic findings in CT-defined ILAs in human lung explants. Materials and Methods Explanted lungs or lobes from participants with radiologically documented ILAs were prospectively collected from 2010 to 2021. These specimens were air-inflated, frozen, and scanned with CT and micro-CT (spatial resolution of 0.7 mm and 90 µm, respectively). Subsequently, the lungs were cut and sampled with core biopsies. At least five samples per lung underwent micro-CT and subsequent histopathologic assessment with semiquantitative remodeling scorings. Based on area-specific radiologic scoring, the association between radiologic and histopathologic findings was assessed. Results Eight lung explants from six donors (median age at explantation, 71 years [range, 60-83 years]; four men) were included (unused donor lungs, n = 4; pre-emptive lobectomy for oncologic indications, n = 2). Ex vivo CT demonstrated ground-glass opacification, reticulation, and bronchiectasis. Micro-CT and histopathologic examination demonstrated that lung abnormalities were frequently paraseptal and associated with fibrosis and lymphocytic inflammation. The histopathologic results showed varying degrees of fibrosis in areas that appeared normal on CT scans. Regions of reticulation on CT scans generally had greater fibrosis at histopathologic analysis. Vasculopathy and bronchiectasis were also often present at histopathologic examination of lungs with ILAs. Fully developed fibroblastic foci were rarely observed. Conclusion This study demonstrated direct histologic correlates of CT-defined interstitial lung abnormalities. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Jeudy in this issue.


Assuntos
Bronquiectasia , Doenças Pulmonares Intersticiais , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pulmão/diagnóstico por imagem , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Fibrose , Microtomografia por Raio-X
11.
Diagnostics (Basel) ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36552956

RESUMO

Lung cancer is considered one of the most fatal malignant neoplasms because of its late detection. Detecting molecular markers in samples from routine bronchoscopy, including many liquid-based cytology procedures, such as bronchoalveolar lavage fluid (BALF), could serve as a favorable technique to enhance the efficiency of a lung cancer diagnosis. BALF analysis is a promising approach to evaluating the tumor progression microenvironment. BALF's cellular and non-cellular components dictate the inflammatory response in a cancer-proliferating microenvironment. Furthermore, it is an essential material for detecting clinically significant predictive and prognostic biomarkers that may aid in guiding treatment choices and evaluating therapy-induced toxicities in lung cancer. In the present article, we have reviewed recent literature about the utility of BALF analysis for detecting markers in different stages of tumor cell metabolism, employing either specific biomarker assays or broader omics approaches.

12.
Front Oncol ; 12: 985446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419902

RESUMO

Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) have improved the prognosis of advanced-stage non-small cell lung cancer (NSCLC) with ALK rearrangement, but resistance mechanisms limit their efficacy. We describe the case of a 63-year-old man with a stage cIVA ALK-rearranged lung adenocarcinoma who developed a BRAF A598-T599insV mutation as a potential resistance mechanism to alectinib, a second-generation ALK TKI. He was treated with an association of BRAF and MEK inhibitors but death occurred two months after treatment initiation in a context of tumor progression and toxicity. Based on this first report of BRAF A598-T599insV mutation occurring in lung cancer, we discuss resistance mechanisms to ALK TKIs, implications of BRAF mutation in NSCLC, and BRAF A598-T599insV mutation in other cancers.

13.
Front Immunol ; 13: 861251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275702

RESUMO

COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.


Assuntos
COVID-19 , Humanos , Granzimas/metabolismo , Perforina/metabolismo , Interleucina-15/metabolismo , Interleucina-18/metabolismo , SARS-CoV-2 , Fator de Necrose Tumoral alfa/metabolismo , Plaquetas/metabolismo , Integrina alfa1/metabolismo , Células Matadoras Naturais , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Antivirais/metabolismo , RNA/metabolismo
14.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171010

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI)-related pneumonitis is the most frequent fatal immune-related adverse event associated with programmed cell death protein-1/programmed death ligand-1 blockade. The pathophysiology however remains largely unknown, owing to limited and contradictory findings in existing literature pointing at either T-helper 1 or T-helper 17-mediated autoimmunity. In this study, we aimed to gain novel insights into the mechanisms of ICI-related pneumonitis, thereby identifying potential therapeutic targets. METHODS: In this prospective observational study, single-cell RNA and T-cell receptor sequencing was performed on bronchoalveolar lavage fluid of 11 patients with ICI-related pneumonitis and 6 demographically-matched patients with cancer without ICI-related pneumonitis. Single-cell transcriptomic immunophenotyping and cell fate mapping coupled to T-cell receptor repertoire analyses were performed. RESULTS: We observed enrichment of both CD4+ and CD8+ T cells in ICI-pneumonitis bronchoalveolar lavage fluid. The CD4+ T-cell compartment showed an increase of pathogenic T-helper 17.1 cells, characterized by high co-expression of TBX21 (encoding T-bet) and RORC (ROR-γ), IFN-G (IFN-γ), IL-17A, CSF2 (GM-CSF), and cytotoxicity genes. Type 1 regulatory T cells and naïve-like CD4+ T cells were also enriched. Within the CD8+ T-cell compartment, mainly effector memory T cells were increased. Correspondingly, myeloid cells in ICI-pneumonitis bronchoalveolar lavage fluid were relatively depleted of anti-inflammatory resident alveolar macrophages while pro-inflammatory 'M1-like' monocytes (expressing TNF, IL-1B, IL-6, IL-23A, and GM-CSF receptor CSF2RA, CSF2RB) were enriched compared with control samples. Importantly, a feedforward loop, in which GM-CSF production by pathogenic T-helper 17.1 cells promotes tissue inflammation and IL-23 production by pro-inflammatory monocytes and vice versa, has been well characterized in multiple autoimmune disorders but has never been identified in ICI-related pneumonitis. CONCLUSIONS: Using single-cell transcriptomics, we identified accumulation of pathogenic T-helper 17.1 cells in ICI-pneumonitis bronchoalveolar lavage fluid-a phenotype explaining previous divergent findings on T-helper 1 versus T-helper 17 involvement in ICI-pneumonitis-,putatively engaging in detrimental crosstalk with pro-inflammatory 'M1-like' monocytes. This finding yields several novel potential therapeutic targets for the treatment of ICI-pneumonitis. Most notably repurposing anti-IL-23 merits further research as a potential efficacious and safe treatment for ICI-pneumonitis.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Pneumonia , Anti-Inflamatórios , Proteínas Reguladoras de Apoptose , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Interleucina-17 , Interleucina-6 , Monócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , RNA , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Transcriptoma
15.
EBioMedicine ; 83: 104195, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939907

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor, a critical component of the kallikrein-kinin system. Its dysregulation may lead to increased vascular permeability and release of inflammatory chemokines. Interactions between the kallikrein-kinin and the coagulation system might further contribute to thromboembolic complications in COVID-19. METHODS: In this observational study, we measured plasma and tissue kallikrein hydrolytic activity, levels of kinin peptides, and myeloperoxidase (MPO)-DNA complexes as a biomarker for neutrophil extracellular traps (NETs), in bronchoalveolar lavage (BAL) fluid from patients with and without COVID-19. FINDINGS: In BAL fluid from patients with severe COVID-19 (n = 21, of which 19 were mechanically ventilated), we observed higher tissue kallikrein activity (18·2 pM [1·2-1535·0], median [range], n = 9 vs 3·8 [0·0-22·0], n = 11; p = 0·030), higher levels of the kinin peptide bradykinin-(1-5) (89·6 [0·0-2425·0], n = 21 vs 0·0 [0·0-374·0], n = 19, p = 0·001), and higher levels of MPO-DNA complexes (699·0 ng/mL [66·0-142621·0], n = 21 vs 70·5 [9·9-960·0], n = 19, p < 0·001) compared to patients without COVID-19. INTERPRETATION: Our observations support the hypothesis that dysregulation of the kallikrein-kinin system might occur in mechanically ventilated patients with severe pulmonary disease, which might help to explain the clinical presentation of patients with severe COVID-19 developing pulmonary oedema and thromboembolic complications. Therefore, targeting the kallikrein-kinin system should be further explored as a potential treatment option for patients with severe COVID-19. FUNDING: Research Foundation-Flanders (G0G4720N, 1843418N), KU Leuven COVID research fund.


Assuntos
COVID-19 , Sistema Calicreína-Cinina , Enzima de Conversão de Angiotensina 2 , Bradicinina , Líquido da Lavagem Broncoalveolar , Humanos , Calicreínas/metabolismo , Peroxidase/metabolismo , SARS-CoV-2 , Calicreínas Teciduais/metabolismo
16.
Clin Chem ; 68(9): 1164-1176, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35769009

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. METHODS: By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. RESULTS: Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. CONCLUSIONS: This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Biomarcadores Tumorais/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Sequenciamento Completo do Genoma
17.
J Clin Oncol ; 40(29): 3430-3438, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35772044

RESUMO

PURPOSE: In rare cases, immune checkpoint inhibitors (ICIs) cause immune-mediated myocarditis. However, true incidence of other major adverse cardiovascular events (MACEs) after ICI treatment remains unknown, mainly because late occurring side effects are rarely reported in prospective clinical trials. The aims of this study were (1) to identify incidence and risk factors of MACE in a real-life ICI-treated cancer cohort and (2) to compare incidence rates with patients with cancer who are not treated with ICIs and population controls. METHODS: In total, 672 patients treated with ICIs were included. The primary end point was MACE, a composite of acute coronary syndrome, heart failure (HF), stroke, and transient ischemic attack. Secondary outcomes were acute coronary syndrome and HF separately. Incidence rates were compared between groups after matching according to age, sex, cardiovascular history, and cancer type. RESULTS: The incidence of MACE was 10.3% during a median follow-up of 13 (interquartile range, 6-22) months. In multivariable analysis, a history of HF (hazard ratio 2.27; 95% CI, 1.03 to 5.04; P = .043) and valvular heart disease (hazard ratio 3.01; 95% CI, 1.05 to 8.66; P = .041) remained significantly associated with MACE. Cumulative incidence rates were significantly higher in the ICI group compared with the cancer cohort not exposed to ICI and the population controls, mainly driven by a higher risk of HF events. CONCLUSION: Cardiovascular events during and after ICI treatment are more common than currently appreciated. Patients at risk are those with a history of cardiovascular disease. Compared with matched cancer and population controls, MACE incidence rates are significantly higher, suggesting a potential harmful effect of ICI treatment besides the underlying risk.


Assuntos
Síndrome Coronariana Aguda , Insuficiência Cardíaca , Neoplasias , Síndrome Coronariana Aguda/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Incidência , Neoplasias/tratamento farmacológico , Estudos Prospectivos
18.
J Clin Med ; 11(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628846

RESUMO

We conducted a prospective single-center observational study to determine lung ultrasound reliability in assessing global lung aeration in 38 hospitalized patients with non-critical COVID-19. On admission, fixed chest CT scans using visual (CTv) and software-based (CTs) analyses along with lung ultrasound imaging protocols and scoring systems were applied. The primary endpoint was the correlation between global chest CTs score and global lung ultrasound score. The secondary endpoint was the association between radiographic features and clinical disease classification or laboratory indices of inflammation. Bland−Altman analysis between chest CT scores obtained visually (CTv) or using software (CTs) indicated that only 1 of the 38 paired measures was outside the 95% limits of agreement (−4 to +4 score). Global lung ultrasound score was highly and positively correlated with global software-based CTs score (r = 0.74, CI = 0.55−0.86; p < 0.0001). Significantly higher median CTs score (p = 0.01) and lung ultrasound score (p = 0.02) were found in severe compared to moderate COVID-19. Furthermore, we identified significantly lower (p < 0.05) lung ultrasound and CTs scores in those patients with a more severe clinical condition manifested by SpO2 < 92% and C-reactive protein > 58 mg/L. We concluded that lung ultrasound is a reliable bedside clinical tool to assess global lung aeration in hospitalized non-critical care patients with COVID-19 pneumonia.

19.
Lung Cancer ; 166: 242-249, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35378489

RESUMO

OBJECTIVES: Targeted RNA-based Next-Generation Sequencing (tRNA-seq) is increasingly being used in molecular diagnostics for gene fusion detection in non-small cell lung cancer (NSCLC). However, few data support its clinical application for the detection of single nucleotide variants (SNVs) and small insertions/deletions. In this study, we evaluated the performance of tRNA-seq using Archer FusionPlex for simultaneous detection of actionable gene fusions, splice variants, SNVs and indels in formalin-fixed, paraffin-embedded NSCLC tissue. MATERIALS AND METHODS: A total of 126 NSCLC samples, including 20 validation samples and 106 diagnostic cases, were analyzed by targeted DNA-based Next-Generation Sequencing (tDNA-seq) followed by tRNA-seq. RESULTS: All 28 SNVs and indels in the validation set, and 34 out of 35 mutations in the diagnostic set were identified by tRNA-seq. The only mutation undetected by tRNA-seq, ERBB2 p.(Ser310Tyr), was not included in the current Archer panel design. tRNA-seq revealed one additional BRAF p.(Val600Glu) mutation not found by tDNA-seq. SNVs and indels were correctly called by the vendor supplied software, except for ERBB2 duplication p.(Tyr772_A775dup) which was only detected by an additional in-house developed bio-informatics pipeline. Variant allelic frequency (VAF) values were generally higher at the expression level compared to the genomic level (range 6-96% for tRNA-seq versus 6-61% for tDNA-seq) and low VAF mutations in DNA (6-8% VAF) were all confirmed by tRNA-seq. Finally, tRNA-seq additionally identified a driver fusion or splice variant in 10 diagnostic NSCLC samples including one MET exon 14 skipping variant not detected by tDNA-seq. CONCLUSION: Our results demonstrate that tRNA-seq can be implemented in a diagnostic setting as an efficient strategy for simultaneous detection of actionable gene fusions, splice variants, SNVs and indels in NSCLC provided that adequate RNA-seq analysis tools are available, especially for the detection of indels. This approach allows upfront identification of currently recommended targetable molecular alterations in NSCLC samples.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação , Análise de Sequência de RNA/métodos
20.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793331

RESUMO

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort. Compared with those of patients with influenza, BAL fluids of patients with COVID-19 contained increased numbers of hyperactivated degranulating neutrophils and elevated concentrations of the cytokines IL-1ß, IL-1RA, IL-17A, TNF-α, and G-CSF; the chemokines CCL7, CXCL1, CXCL8, CXCL11, and CXCL12α; and the protease inhibitors elafin, secretory leukocyte protease inhibitor, and tissue inhibitor of metalloproteinases 1. In contrast, α-1 antitrypsin levels and net proteolytic activity were comparable in COVID-19 and influenza BAL fluids. During antibiotic treatment for bacterial coinfections, increased BAL fluid levels of several activating and chemotactic factors for monocytes, lymphocytes, and NK cells were detected in patients with COVID-19 whereas concentrations tended to decrease in patients with influenza, highlighting the persistent immunological response to coinfections in COVID-19. Finally, the high proteolytic activity in COVID-19 lungs suggests considering protease inhibitors as a treatment option.


Assuntos
Infecções Bacterianas , Líquido da Lavagem Broncoalveolar , COVID-19 , Coinfecção , Influenza Humana , Adulto , Idoso , Infecções Bacterianas/complicações , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/patologia , Coinfecção/imunologia , Coinfecção/metabolismo , Coinfecção/patologia , Citocinas/análise , Feminino , Humanos , Inflamação , Influenza Humana/complicações , Influenza Humana/diagnóstico , Influenza Humana/imunologia , Influenza Humana/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...